LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

PMT1MC03 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 28-04-2025	Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00 PM		

Answer ALL the questions Answer the following Define a first-order initial value differential equation and give an example. When do you say that two functions $x_1(t)$ and $x_2(t)$ are linearly dependent? Describe the systems of first-order equations. State the orthogonal property of Legendre polynomials. Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	$(5 \times 1 = 5)$ $(5 \times 1 = 5)$
Define a first-order initial value differential equation and give an example. When do you say that two functions $x_1(t)$ and $x_2(t)$ are linearly dependent? Describe the systems of first-order equations. State the orthogonal property of Legendre polynomials. Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	(5 x 1 = 5)
When do you say that two functions $x_1(t)$ and $x_2(t)$ are linearly dependent? Describe the systems of first-order equations. State the orthogonal property of Legendre polynomials. Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	(5 x 1 = 5)
Describe the systems of first-order equations. State the orthogonal property of Legendre polynomials. Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	(5 x 1 = 5)
State the orthogonal property of Legendre polynomials. Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	(5 x 1 = 5)
Provide an example of an oscillatory equation with an explanation. SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	(5 x 1 = 5)
SECTION A – K2 (CO1) Answer ALL the questions MCQ Which of the following is the linear differential equation?	$(5 \times 1 = 5)$
Answer ALL the questions MCQ Which of the following is the linear differential equation?	$(5 \times 1 = 5)$
MCQ Which of the following is the linear differential equation?	$(5 \times 1 = 5)$
Which of the following is the linear differential equation?	
•	
(i) $x' + k x = 0$ (ii) $x' + k x = 0$ (iii) $x' + kx^2 = 0$ (iv) $(x')^2 + kx = 0$	
The Picard iteration formula is based on which fundamental mathematical concept? (i) Taylor series expansion (ii) Newton's method (iii) Integral equation (iv) Finite difference method	
A linear equation $x''' - 6x'' + 10x' - 6x = 0$ is transformed to a linear system $x' = Ax$, find $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 10 & 6 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & 10 & -6 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -10 & 6 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -10 & -6 \end{bmatrix}$	nd <i>A</i> .
The recurrence relation for Bessel functions $J_p(t)$ is: (i) $J_{p+1}(t) = \frac{2p}{t}J_p(t) - J_{p-1}(t)$ (ii) $J_{p+1}(t) = J_p(t) - J_{p-1}(t)$ $J_{p+1}(t) = \frac{t}{2p}J_p(t) + J_{p-1}(t)$ (iv) $J_{p+1}(t) = J_p(t) + J_{p-1}(t)$	(iii)
Sturm's comparison theorem is primarily used to compare:	
(i) <i>I</i> p	$J_{p+1}(t) = \frac{2p}{t} J_p(t) - J_{p-1}(t) $ (ii) $J_{p+1}(t) = J_p(t) - J_{p-1}(t)$ $+1(t) = \frac{t}{2p} J_p(t) + J_{p-1}(t) $ (iv) $J_{p+1}(t) = J_p(t) + J_{p-1}(t)$

	SECTION B – K3 (CO2)			
	Answer any THREE of the following $(3 \times 10 = 30)$			
3	Use the method of variation of parameters to find the solution of $x' + a(t)x = b(t)$ where a and b are known continuous function defined on the interval I.			
4				
5	Show that $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & t^2e^{-3t}/2 \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is a fundamental matrix for a linear system $x' = A(t)x$ where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$.			
6	Using Bessel's function, show that $e^{\left(\frac{t}{2}(x-\frac{1}{x})\right)} = \sum_{n=-\infty}^{\infty} J_n(t)x^n$.			
7	Let r_1, r_2 and p be continuous functions on (a, b) and $p > 0$. Assume that x and y are real solutions of $(px')' + r_1x = 0$ and $(py')' + r_2y = 0$ respectively on (a, b) . If $r_2(t) \ge r_1(t)$ for $t \in (a, b)$, show that between any two consecutive zeros t_1, t_2 of x in (a, b) , there exists at least one zero of y in $[t_1, t_2]$. What happens when $r_1 = r_2$?			
SECTION C – K4 (CO3)				
	Answer any TWO of the following (2 x 12.5 = 25)			
8	Analyze the general criteria for ensuring the Lipschitz condition and illustrate with examples.			
9	$L(x(t)) = 0$. Let $\varphi_1, \varphi_2,, \varphi_n$ be <i>n</i> linearly independent solutions of $L(x(t)) = 0$ on <i>I</i> . Derive the formula to the Wronskian of $\varphi_1, \varphi_2,, \varphi_n$.			
10				
11	Explain the Hille-Wintner comparison theorem.			
	SECTION D – K5 (CO4)			
	Answer any ONE of the following $(1 \times 15 = 15)$			
12	Consider two types of living organisms that both rely on the same food source for survival. Formulate a mathematical model to describe this situation, and explain how the model could be used to predict the potential extinction of a particular species based on initial population sizes.			
13	Let $x' = A(t)x$ be a linear system where $A: I \to M_n(R)$ is continuous. Suppose a matrix Φ satisfies the system, determine $(\det \Phi)'$ and discuss that Φ is a fundamental matrix if and only if $\det \Phi \neq 0$.			
	SECTION E – K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 = 20)$			
14	Discuss the conditions for the existence of a unique solution for the first-order initial value problem $x' = f(t, x), x(t_0) = x_0$.			
15	Derive the solution of the Legendre equation $(1 - t^2)x'' - 2tx' + p(p+1)x = 0$ and determine the Legendre polynomial			

\$\$\$\$\$\$\$\$\$\$